OVERALL "TOTAL R" (THERMALLY BRIDGED) THERMAL PERFORMANCE CALCULATIONS TO AS/NZS 4859 Parts 1 & 2:2018

The following calculations by James M Fricker Pty Ltd are based upon:

- a) AS/NZS 4859.1:2018 "Thermal insulation materials for buildings. Part 1: General criteria and technical provisions",
- b) AS/NZS 4859.2:2018 "Thermal insulation materials for buildings. Part 2: Design",
- c) the Australian Institute of Refrigeration Air-conditioning & Heating (AIRAH) Handbook (Edition 5, 2013), and (if necessary) the ASHRAE Fundamentals Handbook.

AS/NZS 4859.2:2018 is a referenced document in NCC2019 & NCC2022.

Initial results report Total R for each thermal path. These results are combined by area weighting and isothermal planes method to deduce **Overall Surface Total R**. This is per AS/NZS 4859.2:2018 Clause 4.3 – "A total resistance associated with a construction of materials, computed or measured over an area sufficient to be fully representative of the element of construction, and specified as a Total R-value, including surface film resistances and thermal bridging."

Total R-values are based on product in-service conditions in accordance with AS/NZS 4859.2:2018 including the alteration of insulation Material R for temperature, and Air Space R for temperature and infrared emittance.

Each calculation result is subject to any specific notes and assumptions listed on the calculation.

If a construction differs from the described system, the thermal resistance may be different.

All calculations were done by James M Fricker, F.AIRAH F.IEAust CPEng NER APEC Engineer IntPE(Aus), Registered Professional Engineer (Victoria PE0005355)

ENGINEERS AUSTRALIA Chartered Professional Engineer MEMBER 1179647

JAMES M FRICKER PTY LTD 54 Felix Crescent Ringwood North VIC 3134 Australia Mobile: 0414 804 097 Phone: (03) 9879 5744 fricker@optusnet.com.au http://fricker.net.au

Report 556a

ESTIMATION OF THE THERMAL RESISTANCE OF THE LOKPOD SYSTEM -LOKPOD 300 RAFT SLAB POD WITH VOID ABOVE REFLECTIVE GROUND BARRIER

The following determines Total Thermal Resistances (R-values) per AS/NZS 4859.1&2:2018, and "Added R".

JMF Calc 556LPr01

The following uses the isothermal planes method to estimate the resulting combined R from the main thermal paths through the concrete/void LOKPOD system. The thermal elements considered to be within the isothermal planes are hilit with yellow in the table

The only insulating elements in the bare LOKPOD system are the voids between the inverted pods and the ground barrier.

				WINTER R				SU	MMER R
Centre Post	Floor system element	t, mm	k	m².K/W		Floor system element	t, mm	k	m².K/W
	85mm concrete	85	1.44	0.059		85mm concrete	85	1.44	0.059
	300mm concrete	300	1.44	0.208		300mm concrete	300	1.44	0.208
	LOKPOD 300 polypropylene	2	0.25	0.008		LOKPOD 300 polypropylene	2	0.25	0.008
	Reflective barrier (facing up)	0	-	0.000		Reflective barrier (facing up)	0	-	0.000
	1000mm earth	1000	1.6	0.625		1000mm earth	1000	1.6	0.625
0.30% area.	R sum between isothermal plan	nes		0.841		R sum between isothermal pl	anes		0.841
4 Sides	Floor system element	t, mm	k	m².K/W		Floor system element	t, mm	k	m².K/W
4 31085	85mm concrete	85	1.44	0.059		85mm concrete	85	1.44	0.059
	300mm concrete	300	1.44	0.009		300mm concrete	300	1.44	0.009
	2mm polypropylene	2	0.25	0.200		2mm polypropylene	2	0.25	0.208
	Reflective barrier (facing up)	0	-	0.000		Reflective barrier (facing up)	0	0.20	0.000
	1000mm earth	1000	1.6	0.625		1000mm earth	1000	1.6	0.625
14.70% area.	R sum between isothermal pla		1.0	0.841		R sum between isothermal pl		1.0	0.841
Central Void	Floor system element	t, mm	k	m².K/W		Floor system element	t, mm	k	m².K/W
	85mm concrete	85	1.44	0.059		85mm concrete	85	1.44	0.059
	2mm polypropylene	2	0.25	0.008		2mm polypropylene	2	0.25	0.008
	Reflective air void	300	0.21	1.445		Reflective air void	300	0.75	0.399
	Reflective barrier (facing up)	0	-	0.000		Reflective barrier (facing up)	0	-	0.000
	1000mm earth	1000	1.6	0.625		1000mm earth	1000	1.6	0.625
85.0% area.	R sum between isothermal plan	nes		2.078		R sum between isothermal pl	anes		1.032
100% area.									
				winter		summer			
	Combined R between isotherm	•		R1.70		R1.00			
	(= 1/(A%/Ra + B%/Rb + C%/R	C)	г						
				Syste	m R-v				
				winter		summer			
LOKPO	D 300 Thermal Resistand	ce*, bas	e R =	R1.14		R0.43			
	*combined R with top 85mm co	oncrete, wi	thout ea	arth beneath					
			I	Tota	R-va	luos			
LOKPOD 300 (with top 85mm concrete)				winter	ix-va	summer			
, , , , , , , , , , , , , , , , , , ,				R1.30		R0.54			
with bare floor									
with 6mm carpet and 15mm underlay			R1.71		R0.95				

ADDED R VALUES -	winter	summer
LOKPOD 300 (with reflective void beneath)	R1.08	summer R0.37

NOTES

Determinations based upon AS/NZS 4859.1&2:2018, Thermal insulation materials for buildings.

The thermal components in the system are hilit in yellow and the bounding surfaces are taken as the isothermal planes for thermal bridging calculations.

R1.71 R1.46

R0.70

The 1000 mm earth is included in the calcs to achieve the requisite isothermal plane, and then its value subtracted for the System & Total R results.

The reflective barrier top surface is assumed to have hemispherical infrared emittance of 0.04 to ASTM C1371.

If 25mm of extruded polystyrene is used as slab perimeter insulation, edge heat loss will be negligible.

This report may not be reproduced except in full. Results may not be quoted without reference to the assumptions.

"Added R" is the thermal resistance addition due to the inclusion of the LOKPOD system to a base system only having an 85mm concrete slab.

Calculated by James Fricker, F.AIRAH F.IEAust CPEng NER APEC Engineer IntPE(Aus)

Registered Professional Engineer (Victoria PE0005355)

with 25mm mountain ash floating timber overlay

Signed.

Jomes Fricker

Calculation date 18/03/2024 556 LOKPOD.xls

Report 556a

ESTIMATION OF THE THERMAL RESISTANCE OF THE LOKPOD SYSTEM -LOKPOD 225 RAFT SLAB POD WITH VOID ABOVE REFLECTIVE GROUND BARRIER

The following determines Total Thermal Resistances (R-values) per AS/NZS 4859.1&2:2018, and "Added R".

JMF Calc 556LPr02

The following uses the isothermal planes method to estimate the resulting combined R from the main thermal paths through the concrete/void LOKPOD system. The thermal elements considered to be within the isothermal planes are hilit with yellow in the table

The only insulating elements in the bare LOKPOD system are the voids between the inverted pods and the ground barrier.

				WINTER R				SU	MMER R
Centre Post	Floor system element	t, mm	k	m².K/W	Floor syster	n element	t, mm	k	m².K/W
	85mm concrete	85	1.44	0.059	85mm cond	crete	85	1.44	0.059
	225mm concrete	225	1.44	0.156	225mm cor	ncrete	225	1.44	0.156
	LOKPOD 225 polypropylene	2	0.25	0.008	LOKPOD 2	25 polypropylene	2	0.25	0.008
	Reflective barrier (facing up)	0	-	0.000	Reflective b	arrier (facing up)	0	-	0.000
	1000mm earth	1000	1.6	0.625	1000mm ea	arth	1000	1.6	0.625
0.30% area.	R sum between isothermal plan	nes		0.789	R sum betw	veen isothermal pla	ines		0.789
4 Sides	Floor system element	t, mm	k	m².K/W	Floor syster	n element	t, mm	k	m².K/W
	85mm concrete	85	1.44	0.059	85mm cond	crete	85	1.44	0.059
	225mm concrete	225	1.44	0.156	225mm cor	ncrete	225	1.44	0.156
	2mm polypropylene	2	0.25	0.008	2mm polypi	ropylene	2	0.25	0.008
	Reflective barrier (facing up)	0	-	0.000	Reflective b	arrier (facing up)	0	-	0.000
	1000mm earth	1000	1.6	0.625	1000mm ea	arth	1000	1.6	0.625
14.70% area.	R sum between isothermal plan	nes		0.789	R sum betw	veen isothermal pla	ines		0.789
Central Void	Floor system element	t, mm	k	m².K/W	Floor syster	n element	t, mm	k	m².K/W
	85mm concrete	85	1.44	0.059	85mm cond		85	1.44	0.059
	2mm polypropylene	2	0.25	0.008	2mm polyp	ropylene	2	0.25	0.008
	Reflective air void	225	0.16	1.390	Reflective	air void	225	0.56	0.399
	Reflective barrier (facing up)	0	-	0.000	Reflective b	arrier (facing up)	0	-	0.000
	1000mm earth	1000	1.6	0.625	1000mm ea		1000	1.6	0.625
<u>85.0% area.</u> 100% area.	R sum between isothermal plan	nes		2.023	R sum betw	veen isothermal pla	ines		1.032
				winter	summer				
	Combined R between isotherm	al planes		R1.64	R0.99				
	(= 1/(A%/Ra + B%/Rb + C%/R	Rc)				_			
				System	R-values				
				winter	summer				
LOKPO	D 225 Thermal Resistand	ce*, bas	e R =	R1.07	R0.42				
*combined R with top 85mm concrete, without ea			arth beneath						
]				Total R	-values	1			
LOKPOD 225 (with top 85mm concrete)				winter	summer	1			
with bare floor				R1.23	R0.53				
with 6mm carpet and 15mm underlay			R1.64	R0.94					

ADDED R VALUES -	winter	summer
LOKPOD 225 (with reflective void beneath)	R1.01	summer R0.36

NOTES

Determinations based upon AS/NZS 4859.1&2:2018, Thermal insulation materials for buildings.

The thermal components in the system are hilit in yellow and the bounding surfaces are taken as the isothermal planes for thermal bridging calculations.

R1.39

R0.69

The 1000 mm earth is included in the calcs to achieve the requisite isothermal plane, and then its value subtracted for the System & Total R results.

The reflective barrier top surface is assumed to have hemispherical infrared emittance of 0.04 to ASTM C1371.

If 25mm of extruded polystyrene is used as slab perimeter insulation, edge heat loss will be negligible.

This report may not be reproduced except in full. Results may not be quoted without reference to the assumptions.

"Added R" is the thermal resistance addition due to the inclusion of the LOKPOD system to a base system only having an 85mm concrete slab.

Calculated by James Fricker, F.AIRAH F.IEAust CPEng NER APEC Engineer IntPE(Aus)

Registered Professional Engineer (Victoria PE0005355)

with 25mm mountain ash floating timber overlay

Signed.

Jomes Fricker

Calculation date 18/03/2024 556_LOKPOD.xls

Report 556a

ESTIMATION OF THE THERMAL RESISTANCE OF THE LOKPOD SYSTEM -LOKPOD 150 RAFT SLAB POD WITH VOID ABOVE REFLECTIVE GROUND BARRIER

The following determines Total Thermal Resistances (R-values) per AS/NZS 4859.1&2:2018, and "Added R".

JMF Calc 556LPr03

The following uses the isothermal planes method to estimate the resulting combined R from the main thermal paths through the concrete/void LOKPOD system. The thermal elements considered to be within the isothermal planes are hilit with yellow in the table

The only insulating elements in the bare LOKPOD system are the voids between the inverted pods and the ground barrier.

				WINTER R				SU	MMER R
Centre Post	Floor system element	t, mm	k	m².K/W		Floor system element	t, mm	k	m².K/W
	85mm concrete	85	1.44	0.059		85mm concrete	85	1.44	0.059
	150mm concrete	150	1.44	0.104		150mm concrete	150	1.44	0.104
	LOKPOD 150 polypropylene	2	0.25	0.008		LOKPOD 150 polypropylene	2	0.25	0.008
	Reflective barrier (facing up)	0	-	0.000		Reflective barrier (facing up)	0	-	0.000
	1000mm earth	1000	1.6	0.625		1000mm earth	1000	1.6	0.625
0.30% area.	R sum between isothermal pla	nes		0.737		R sum between isothermal pla	anes		0.737
4 Sides	Floor system element	t, mm	k	m².K/W		Floor system element	t, mm	k	m².K/W
	85mm concrete	85	1.44	0.059		85mm concrete	85	1.44	0.059
	150mm concrete	150	1.44	0.104		150mm concrete	150	1.44	0.104
	2mm polypropylene	2	0.25	0.008		2mm polypropylene	2	0.25	0.008
	Reflective barrier (facing up)	0	-	0.000		Reflective barrier (facing up)	0	-	0.000
	1000mm earth	1000	1.6	0.625		1000mm earth	1000	1.6	0.625
14.70% area.	R sum between isothermal pla	nes		0.737		R sum between isothermal pla	anes		0.737
Central Void	Floor system element	t, mm	k	m².K/W		Floor system element	t, mm	k	m².K/W
	85mm concrete	85	1.44	0.059		85mm concrete	85	1.44	0.059
	2mm polypropylene	2	0.25	0.008		2mm polypropylene	2	0.25	0.008
	Reflective air void	150	0.11	1.308		Reflective air void	150	0.38	0.399
	Reflective barrier (facing up)	0	-	0.000		Reflective barrier (facing up)	0	-	0.000
	1000mm earth	1000	1.6	0.625		1000mm earth	1000	1.6	0.625
<u>85.0% area.</u> 100% area.	R sum between isothermal pla		1.941		R sum between isothermal pla	anes		1.032	
			winter		summer				
	Combined R between isotherm	al planes		R1.56		R0.97			
	(= 1/(A%/Ra + B%/Rb + C%/R								
				Systen	n R-v	alues			
				winter		summer			
LOKPOD 150 Thermal Resistance*, base R =			e R =	R0.99		R0.41			
*combined R with top 85mm concrete, without ea				rth beneath					
	Total	R-va	lues						
LOKPOD 150 (with top 85mm concrete)			I	winter		summer			
with bare floor			R1.15		R0.52				

ADDED R VALUES -	winter	summer
LOKPOD 150 (with reflective void beneath)	R0.93	summer R0.35

NOTES

Signed.

Determinations based upon AS/NZS 4859.1&2:2018, Thermal insulation materials for buildings.

The thermal components in the system are hilit in yellow and the bounding surfaces are taken as the isothermal planes for thermal bridging calculations.

R1.56

R1.31

R0.93

R0.68

The 1000 mm earth is included in the calcs to achieve the requisite isothermal plane, and then its value subtracted for the System & Total R results.

The reflective barrier top surface is assumed to have hemispherical infrared emittance of 0.04 to ASTM C1371.

If 25mm of extruded polystyrene is used as slab perimeter insulation, edge heat loss will be negligible.

This report may not be reproduced except in full. Results may not be quoted without reference to the assumptions.

"Added R" is the thermal resistance addition due to the inclusion of the LOKPOD system to a base system only having an 85mm concrete slab.

Calculated by James Fricker, F.AIRAH F.IEAust CPEng NER APEC Engineer IntPE(Aus)

Registered Professional Engineer (Victoria PE0005355)

with 6mm carpet and 15mm underlay

with 25mm mountain ash floating timber overlay

Jomes Fricker

ENGINEERS AUSTRALIA red Professional Engineer MEMBER 1179647

Calculation date 18/03/2024 556 LOKPOD.xls